In France, meat-and-bone meal (MBM) has been banned from cattle feed since July 30, 1990. However, through January 1, 2007, 957 cases of bovine spongiform encephalopathy (BSE) have been detected in cattle born after the ban. These cases provide evidence that BSE control has not been entirely effective, which poses a concern because BSE is a zoonotic disease, a source of variant Creutzfeldt-Jakob disease (vCJD). Until now, 158 definite or probable cases of vCJD in humans have been detected in the United Kingdom and 21 in France. The risk for humans is controlled by removing specified risk materials from human consumption (since 1996 in France, later in other European countries) and testing all cattle at the abattoir with a rapid test (since 2001 in continental European Union). However, these measures are expensive. Achieving 100% control of the spread of BSE is a major challenge, important for human health but limited by economic constraints.
The main hypothesis concerning the source of infection in cattle born after the MBM ban still involves MBM; the BSE agent may have entered cattle feed by cross-contamination with feed for monogastric species (pigs and poultry) in which MBM was still authorized until November 2000. Cross-contamination could have occurred within factories, during feed delivery to the farm, or on mixed farms that have cattle and pigs or poultry. This hypothesis is supported by the finding of MBM traces in cattle feed as well as by epidemiologic studies that showed a spatial link between density of monogastric species and risk for BSE. Another hypothesis, however, suggests the role of other animal byproducts such as fat and dicalcium phosphate (DCP) derived from bones, which were not prohibited in cattle feed before 2000. Such components might have been contaminated by the BSE agent during cattle slaughter. A statistically higher use of milk replacers (which contain animal fat) for calves on BSE-affected farms in Germany was found and the same type of association was observed in France for scrapie in sheep.
More knowledge about these factors is critical for the management of the BSE risk, as the BSE epidemic decreases and pressure increases to release progressively more stringent control measures. Risk for BSE was spatially heterogeneous in France for the infected cattle born after the ban, meaning that the source of infection might be spatially heterogeneous. If animal byproducts were a source of BSE for cattle born after the ban, we would expect a higher risk for BSE in areas with higher use of those animal byproducts in feed. We therefore investigated geographic variations in the use of animal byproducts in feed factories (MBM for monogastric species, animal fat and animal DCP for cattle) and explored their spatial link with risk for BSE in the market areas of the factories.
In France, despite the ban of meat-and-bone meal (MBM) in cattle feed, bovine spongiform encephalopathy (BSE) was detected in hundreds of cattle born after the ban. To study the role of MBM, animal fat, and dicalcium phosphate on the risk for BSE after the feed ban, we conducted a spatial analysis of the feed industry. We used data from 629 BSE cases as well as data on use of each byproduct and market area of the feed factories. We mapped risk for BSE in 951 areas supplied by the same factories and connection with use of byproducts. A disease map of BSE with covariates was built with the hierarchical Bayesian modeling methods, based on Poisson distribution with spatial smoothing. Only use of MBM was spatially linked to risk for BSE, which highlights cross-contamination as the most probable source of infection after the feed ban.
Emerging Infectious Diseases
June 26, 2007
Original web page at Emerging Infectious Diseases