Categories
News

Test run finds no cancer risk from stem cell therapy

Therapeutic stem cells can be made without introducing genetic changes that could later lead to cancer, a study in PLOS Genetics has found.

The discovery, made by researchers at the Wellcome Trust Sanger Institute, is a boost for scientists working on ways to make regenerative medicines from induced pluripotent stem (iPS) cells; a type of stem cell made by reprogramming healthy body cells.

It is the first time scientists have tracked the genetic mutations gathered by iPS cells as they are grown in the laboratory.

The idea behind the research was to follow the whole journey iPS cells will take when used in clinical therapy. The Sanger Institute team, led by Professor Allan Bradley and Dr Kosuke Yusa, started with blood cells donated by a 57-year-old man.

As a person grows from embryo, to child, to adult, and as they age, the cells in their body generate a mosaic of tiny genetic changes. Most of these mutations have no effect but some can lead to cancer. The Sanger Institute team traced the history of genetic changes in both the donated blood cell and the iPS cells created from it.

The results reveal that mutations arise 10 times less often in iPS cells than they do in lab-grown blood cells and that none of the iPS cell mutations are in genes known to cause cancer.

Lead researcher Dr Foad Rouhani said: “None of the mutations we found in induced pluripotent stem cells were cancer-driver mutations or mutations in cancer-causing genes. We didn’t find anything that would preclude the use of iPS cells in therapeutic medicine.”

In addition, the team used the iPS cells, reprogrammed from the donated blood cell, to trace the history of every mutation that one cell had developed from the time it was a fertilised egg all the way up to the moment it was taken out of the body.

This is the first time that mutation rates of both types of cells, the donor cell and iPS cell, have been calculated and compared.

Professor Allan Bradley said: “Until now the question of whether generating iPS cells and growing them in cell culture creates mutations has not been addressed in detail. If human cells are really to be reprogrammed on a large scale for use in regenerative medicine then understanding the mutations the donor cells carry will be a crucial step. We now have the tools to do this.”

The ability to track the genetic changes in cells over a lifetime could also improve scientists’ understanding of how, when and why mutations can lead to cancer.

Dr Kosuke Yusa said: “One of the exciting things is that we have found a way to use iPS cells as a tool to look at the genetic history of a single cell. It also underlines the fact that before you use these cells you really need to characterise them to a high degree to know where the mutations that have been introduced are.”

The team also found that the genetic changes that do take place in iPS cells in the lab might be caused by a mechanism known as oxidative stress. They hope this knowledge will help to find ways to improve the process of making iPS cells.

Researchers from the University of Cambridge and the European Bioinformatics Institute also contributed to the study.

https://www.sciencedaily.com/  Science Daily

https://www.sciencedaily.com/releases/2016/04/160407150325.htm  Original web page at Science Daily

Categories
News

Why do cells rush to heal a wound? Mysteries of wound healing unlocked

Researchers at the University of Arizona have discovered what causes and regulates collective cell migration, one of the most universal but least understood biological processes in all living organisms.

The findings, published in the March 13, 2015, edition of Nature Communications, shed light on the mechanisms of cell migration, particularly in the wound-healing process. The results represent a major advancement for regenerative medicine, in which biomedical engineers and other researchers manipulate cells’ form and function to create new tissues, and even organs, to repair, restore or replace those damaged by injury or disease.

“The results significantly increase our understanding of how tissue regeneration is regulated and advance our ability to guide these processes,” said Pak Kin Wong, UA associate professor of mechanical and aerospace engineering and lead investigator of the research.

“In recent years, researchers have gained a better understanding of the molecular machinery of cell migration, but not what directs it to happen in the first place,” he said. “What, exactly, is orchestrating this system common to all living organisms?”

The answer, it turns out, involves delicate interactions between biomechanical stress, or force, which living cells exert on one another, and biochemical signaling.

The UA researchers discovered that when mechanical force disappears — for example at a wound site where cells have been destroyed, leaving empty, cell-free space — a protein molecule, known as DII4, coordinates nearby cells to migrate to a wound site and collectively cover it with new tissue. What’s more, they found, this process causes identical cells to specialize into leader and follower cells. Researchers had previously assumed leader cells formed randomly.

Wong’s team observed that when cells collectively migrate toward a wound, leader cells expressing a form of messenger RNA, or mRNA, genetic code specific to the DII4 protein emerge at the front of the pack, or migrating tip. The leader cells, in turn, send signals to follower cells, which do not express the genetic messenger. This elaborate autoregulatory system remains activated until new tissue has covered a wound.

The same migration processes for wound healing and tissue development also apply to cancer spreading, the researchers noted. The combination of mechanical force and genetic signaling stimulates cancer cells to collectively migrate and invade healthy tissue.

Biologists have known of the existence of leader cells and the DII4 protein for some years and have suspected they might be important in collective cell migration. But precisely how leader cells formed, what controlled their behavior, and their genetic makeup were all mysteries — until now.

“Knowing the genetic makeup of leader cells and understanding their formation and behavior gives us the ability to alter cell migration,” Wong said.

With this new knowledge, researchers can re-create, at the cellular and molecular levels, the chain of events that brings about the formation of human tissue. Bioengineers now have the information they need to direct normal cells to heal damaged tissue, or prevent cancer cells from invading healthy tissue.

The UA team’s findings have major implications for people with a variety of diseases and conditions. For example, the discoveries may lead to better treatments for non-healing diabetic wounds, the No. 1 cause of lower limb amputations in the United States; for plaque buildup in arteries, a major cause of heart disease; and for slowing or even stopping the spread of cancer, which is what makes it so deadly.

The research also has the potential to speed up development of bioengineered tissues and organs that can be successfully transplanted in humans.

In the UA Systematic Bioengineering Laboratory, which Wong directs, researchers used a combination of single-cell gene expression analysis, computational modeling and time-lapse microscopy to track leader cell formation and behavior in vitro in human breast cancer cells and in vivo in mice epithelial cells under a confocal microscope.

Their work included manipulating leader cells through pharmacological, laser and other means to see how they would react.

“Amazingly, when we directed a laser at individual leader cells and destroyed them, new ones quickly emerged at the migrating tip to take their place,” said Wong, who likened the mysteries of cell migration and leader cell formation to the processes in nature that cause geese to fly in V-formation or ants to build a colony.

https://www.sciencedaily.com/  Science Daily

https://www.sciencedaily.com/releases/2015/03/150313094551.htm  Original web page at Science Daily

Categories
News

Radiation improves survival in older patients with soft tissue sarcomas

UC Davis researchers have shown that radiation therapy following surgery benefits older patients more than their younger counterparts, a surprising finding that could change the way some patients are treated for soft tissue sarcomas (STS).

The study, published in the journal Anticancer Research, used data from the Surveillance, Epidemiology, and End Results (SEER) program to assess whether radiation treatments after surgery improved disease-specific and overall survival in patients with non-metastatic sarcomas.

They found that radiation did increase survival compared to surgery alone, but the improvements mostly benefited patients 65 and older. This is the first time these outcomes have been analyzed on such a granular level, factoring in both age and cancer subtype.

“We found that older patients had a survival benefit with radiation, but in younger patients, many of those benefits went away,” said Robert Canter, associate professor in the Department of Surgery and principal investigator on the paper. “It seems that older patients respond better to the combination of surgery and radiation.”

There are more than 50 different types of soft-tissue sarcomas, which develop in muscles, fat and other cell types. While these conditions are generally treated surgically, it was not clear whether radiation therapy after surgery improved survival.

To clarify the issue, Canter and colleagues crunched data from SEER, which has gathered detailed cancer statistics since the 1970s. Analyzing data collected between 1990 and 2011, the team identified 15,380 non-pediatric patients with non-metastatic STS who were treated with surgery alone or with surgery and radiation.

The group pulled data on the tumor site, grade, size, cancer subtype and year of diagnosis, as well as the patient’s age, gender and other demographic information.

The team found significant improvements in overall survival and disease-specific survival in older patients across the majority of sarcomas. This was particularly true of the 12 major STS subtypes, including rhabdomyosarcoma, fibrosarcoma and synovial sarcoma. Younger patients benefited much less from radiation.

These results were somewhat surprising, as the researchers expected radiotherapy to primarily improve survival for younger patients.

“We were thinking it would be the opposite,” said Canter. “If the benefit is immune-mediated, younger patients should respond better since they have stronger immune systems.”

While younger patients did not receive the same level of benefit from radiotherapy as the older groups, they still had better overall and disease-specific survival from STS. The improvements among the older groups were compared to other older patients with similar disease who did not receive radiation.

Canter notes that more work must be done to validate the findings and illuminate the mechanisms that drive these age-related radiotherapy benefits. However, the work does offer a path to improve STS treatments for older patients.

“We sometimes don’t want to treat older people with radiation because we’re worried about the side effects,” said Canter. “However, these results indicate these patients should really be receiving it if they are candidates.”

https://www.sciencedaily.com/ Science Daily

https://www.sciencedaily.com/releases/2016/04/160411134812.htm  Original web page at Science Daily

Categories
News

The up- and downside of caloric restriction for aging and health

It’s already well known that a diet may have a life-extending effect. Researchers from Leibniz Institute on Aging — Fritz Lipmann Institute (FLI) in Jena, Germany, now showed that besides improving the functionality of stem cells in mice, a caloric restriction also leads to a fatale weakening of their immune system — counteracting the life-lengthening effect of a diet. The results are published in the Journal of Experimental Medicine on March, 14. 2016.

Only few years ago, researchers succeeded in prolonging the lifespan of worm C. elegans, fruit fly D. melongaster and rats by almost 50% through a simple caloric restriction — which immediately fueled hopes for having found one key to a longer life also for humans. However, transferring these results to long-lived primates short after was not equally successful and cooled down enthusiasms quite quickly. Now, aging researcher Karl Lenhard Rudolph, Scientific Director at the Leibniz Institute on Aging — Fritz Lipmann Institute (FLI) in Jena, Germany, and his team showed that caloric restriction even has a severe downside. In feeding experiments, the stem cells of mice, which were set on a diet, were found to age slower — but the murine immune system was almost completely cut down. Outside of optimal, sterile laboratory conditions, this could lead to severe live-shortening infections. The results of the study are published in the Journal of Experimental Medicine’s current issue.

The study focused on the effects of caloric restriction on blood stem cells (so-called hematopoietic stem cells, HSC) that are responsible for building red blood cells or lymphocytes (immune cells). Like for any other adult stem cell, HSC functionality decreases with every single cell division — the stem cells age. This is why they stay in a resting phase (quiescence) most of the time and are only activated when a massive cell reproduction is required (e.g. after acute blood loss). In their study, the researchers from Jena investigated how a 30% food restriction effects stem cell aging in mice. One main result was that the HSC stayed in a quiescent state even if simulated stress would have required their activation. This effect was found regardless of how long the diet lasted. Thus, during diet, the blood stem cells did not age at all and their functionality to build new blood cells remained increased even one year after diet.

But the long-term diet had a downside, as well: The mice’s immune system almost completely was cut down. Although the diet had no strong effect on the overall cell number of blood cells, the production of lymphocytes — needed for immune defense — was decreased by up to 75%. As a consequence, mice were particularly prone to bacterial infections.

“The study provides the first experimental evidence that long-term caloric restriction — as intervention to slow down aging — increases stem cell functionality, but results in immune defects in the context of prolonged bacterial infection, too. Thus, positive effects of a diet are not transferable to humans one to one,” Rudolph sums up the study results. Even if — under laboratory conditions — aging of single cells or tissues may be slowed down through a diet, the immune suppression may have fatal consequences in real life. To benefit from caloric restriction or medicinal mimetika aiming at increasing health in the elderly, possible risks of such interventions to come down with life-threatening infections remain to be elucidated. “In sepsis patients, we see a higher survival rate for those with a higher body weight than for patients who are very lean,” Prof. Dr. Michael Bauer, Director of the Center for Sepsis Control and Care at University Hospital Jena (UKJ), concurs.

https://www.sciencedaily.com/   Science Daily

https://www.sciencedaily.com/releases/2016/03/160314101759.htm  Original web page at Science Daily

Categories
News

Antibiotic resistance: it’s a social thing

Trace concentrations of antibiotic, such as those found in sewage outfalls, are enough to enable bacteria to keep antibiotic resistance, new research from the University of York has found. The concentrations are much lower than previously anticipated, and help to explain why antibiotic resistance is so persistent in the environment.

Antibiotic resistance can work in different ways. The research described the different mechanisms of resistance as either selfish or co-operative. A selfish drug resistance only benefits the individual cell with the resistance while a co-operative antibiotic resistance benefits both the resistant cell and surrounding cells whether they are resistant or not.

The researchers analysed a plasmid called RK2 in Escherichia coli, a bacterium which can cause infectious diarrhea. RK2 encodes both co-operative resistance to the antibiotic ampicillin and selfish resistance to another antibiotic, tetracycline. They found that selfish drug resistance is selected for at concentrations of antibiotic around 100-fold lower than would be expected — equivalent to the residues of antibiotics found in contaminated sewage outfalls.

The study, which is published in Antimicrobial Agents and Chemotherapy (AAC), involved Professor Michael Brockhurst, Dr Jamie Wood and PhD student Michael Bottery in the Departments of Biology and Mathematics at York.

Dr Wood said: “The most common way bacteria become resistant to antibiotics is through horizontal gene transfer. Small bits of DNA, called plasmids, contain the resistance and can hop from one bacteria to another. Worse still, plasmids often contain more than one resistance.”

Michael Bottery added: “There is a reservoir of antibiotic resistance out there which bacteria can pick and choose from. What we have found is some of that resistance can exist at much lower concentrations of antibiotic than previously understood.”

https://www.sciencedaily.com/  Science Daily

https://www.sciencedaily.com/releases/2016/03/160315090336.htm  Original web page at Science Daily

Categories
News

New compounds discovered as candidates for new antimicrobial drugs against Listeria infection

Scientists at Umeå Centre for Microbial Research (UCMR) have discovered chemical compounds which are able to attenuate the virulence of the bacterial human pathogen Listeria monocytogenes. Their findings are published today in the high impact journal Cell Chemical Biology.

The dramatic increase of antibiotic resistance makes new antimicrobial strategies necessary. The researchers at Umeå University in Sweden are studying an alternative approach, to inhibit the disease capacity (virulence) of bacteria but not their viability. Compared with traditional antibiotics, which often kill the bacteria, the risk of resistance development in disarmed bacteria is lower, since their survival does not depend on resistance against the new drug.

A Listeria infection can be very severe, particularly among patients such as elderly, infants, immunocompromised or pregnant women. Although disease occurrence is relatively low, Listeria‘s severe and sometimes fatal health consequences make it among the most serious foodborne infections, with a mortality of 30%. Listeria is found in unpasteurized dairy products and various ready-to-eat foods, and can grow at refrigeration temperatures. In Sweden, 60-90 people per year get infected and the statistics show that the number of outbreaks is increasing.

The study involved several different Umeå University research groups with diverse specialties: Microbiology, Chemistry and Structural Biology. The group of Jörgen Johansson, professor at the laboratory for Molecular Infection Medicine Sweden (MIMS) and the Department of Molecular Biology collaborated with the research groups of Elisabeth Sauer-Eriksson and Fredrik Almqvist, both professors at the Department of Chemistry.

The researchers tested a large number of possible candidates, which could inhibit expression of the Listeria virulence factors. For the test, they screened Listeria infection of human cells with a collection of ring-fused 2-pyridones. The scientists could prove that the ring-fused 2-pyridones could both attenuate the uptake of Listeria in the cell and the activity of the virulence regulator PrfA, which control the pathogenic abilities of Listeria.

The researchers also identified the first crystal structure of PrfA together with an inhibitor. Binding of the inhibitor to PrfA blocked its ability to interact with DNA, thereby preventing expression of virulence factors. As a consequence, Listeria bacteria were not able to bind and infect the human cells.

“This study means a lot for future development of ‘disarming compounds’, not only in Listeria. In fact, our study is the first example on a structural level of an inhibition of any virulence regulator in bacteria,” says Jörgen Johansson about the impact of the findings.

“The first results are very promising. We have been able to use the structural information to design and synthesize new improved candidates that are now being evaluated,” added Fredrik Almqvist.

“We now know that this class of compounds (2-pyridones) constitute a great platform for the development of virulence blocking compounds. We have developed methods that allow us to fine-tune the substitution pattern and compound properties in such a way that we can direct these compounds towards several different pathogens e.g. E. coli and Chlamydia. And more studies are ongoing with other pathogens,” adds Fredrik Almqvist.

“Through this very fruitful research collaboration, we showed that Umeå has all the tools and expertise needed to understand and develop new antimicrobial strategies,” says Elisabeth Sauer-Eriksson.

https://www.sciencedaily.com/  Science Daily

https://www.sciencedaily.com/releases/2016/03/160317151130.htm  Original web page at Science Daily

Categories
News

Stem cells used to identify cellular processes related to glaucoma

Using stem cells derived from human skin cells, researchers led by Jason Meyer, assistant professor of biology, along with graduate student Sarah Ohlemacher of the School of Science at Indiana University-Purdue University Indianapolis, have successfully demonstrated the ability to turn stem cells into retinal ganglion cells (RGCs), the neurons that conduct visual information from the eye to the brain. Their goal is the development of therapies to prevent or cure glaucoma.

In addition to glaucoma, a group of degenerative diseases that damage the eye’s optic nerve and can result in vision loss and blindness, this work has potential implications for treatment of optic- nerve injuries of the types incurred by soldiers in combat or athletes in contact sports.

In the study, which appears online in advance of publication in the journal Stem Cells, the IUPUI investigators took skin cells biopsied from volunteers with an inherited form of glaucoma and from volunteers without the disease and genetically reprogrammed them to become pluripotent stem cells, meaning they are able to differentiate into any cell type in the body. The researchers then directed the stem cells to become RGCs at which point the cells began adopting features specific to RGCs — features that were different in the cells of individuals with glaucoma than in the cells that came from healthy individuals.

Glaucoma is the most common disease that affects RGCs, which serve as the connection between the eye and the brain, sending information taken in by the eye to the brain for interpretation. When these cells are damaged or severed, the brain cannot receive critical information, leading to blindness. The National Institutes of Health’s National Eye Institute estimates that glaucoma affects more than 2.7 million people in the United States and more than 60 million worldwide.

“Skin cells from individuals with glaucoma are no different from skin cells of those without glaucoma,” said Meyer, a cell biologist and stem cell researcher, who also holds an appointment as a primary investigator with the Stark Neurosciences Research Institute at the Indiana University School of Medicine. “However, when we turned glaucoma patients’ skin cells into stem cells and then into RGCs, the cells became unhealthy and started dying off at a much faster rate than those of healthy individuals.

“Now that we have produced cells that develop features of glaucoma in culture dishes, we want to see if compounds we add to these RGCs can slow down the degeneration process or prevent these cells from dying off. We already have found candidates that look promising and are studying them. In the more distant future, we may be able to use healthy patient cells as substitute cells as we learn how to replace cells lost to the disease. It’s a significant challenge, but it’s the ultimate — and, we think, not unrealistic — long-range goal.”

https://www.sciencedaily.com/   Science Daily

https://www.sciencedaily.com/releases/2016/03/160321081227.htm  Original web page at Science Daily

Categories
News

Likely biological link found between Zika virus, microcephaly

Working with lab-grown human stem cells, a team of researchers suspect they have discovered how the Zika virus probably causes microcephaly in fetuses. The virus selectively infects cells that form the brain’s cortex, or outer layer, making them more likely to die and less likely to divide normally and make new brain cells.

The researchers say their experiments also suggest these highly-susceptible lab-grown cells could be used to screen for drugs that protect the cells or ease existing infections.

“Studies of fetuses and babies with the telltale small brains and heads of microcephaly in Zika-affected areas have found abnormalities in the cortex, and Zika virus has been found in the fetal tissue,” says Guo-li Ming, M.D., Ph.D., a professor of neurology, neuroscience, and psychiatry and behavioral science at Johns Hopkins’ Institute for Cell Engineering. “While this study doesn’t definitely prove that Zika virus causes microcephaly, it’s very telling that the cells that form the cortex are potentially susceptible to the virus, and their growth could be disrupted by the virus.” Ming led the research team along with Hongjun Song, Ph.D., a professor of neurology and neuroscience in the Institute for Cell Engineering, and Hengli Tang, Ph.D., a virologist at Florida State University.

Results of the experiments, conducted by researchers at the Johns Hopkins University School of Medicine, Florida State University, and Emory University, are described online March 4 in the journal Cell Stem Cell.

In a quickly executed study that reflects the global public health threat posed by Zika, the researchers compared Zika’s effect on cells known as cortical neural progenitor cells to two other cell types: induced pluripotent stem cells and immature neurons. Induced pluripotent stem cells are made by reprogramming mature cells, and can give rise to any cell type in the body, including cortical neural progenitor cells. Cortical neural progenitor cells in turn give rise to immature neurons.

The experiments, conducted in less than a month, began when Tang reached out to Ming and Song, who use stem cells to study early brain development. The Johns Hopkins labs sent team members and cells to Tang’s lab, where the cells were exposed to Zika virus. Then the cells’ genetic expression — evidence of which genes were being used by the cells and which weren’t — were analyzed in Peng Jin’s laboratory at Emory University.

According to Tang, three days after exposure to the virus, 90 percent of the cortical neural progenitor cells were infected, and had been hijacked to churn out new copies of the virus. Furthermore, the genes needed to fight viruses had still not been switched on, which is highly unusual, he adds. Many of the infected cells died, and others showed disrupted expression of genes that control cell division, indicating that new cells could not be made effectively.

Using specific, known types of cells allowed the researchers to see where the developing brain is most vulnerable, Song says. He and Ming are now using the cells to find out more about the effects of Zika infection on the developing cortex. “Now that we know cortical neural progenitor cells are the vulnerable cells, they can likely also be used to quickly screen potential new therapies for effectiveness,” Song adds.

Zika virus has recently emerged as a public health concern, but it was first discovered in Uganda in the 1940s. Since then, small outbreaks have appeared in Asia and Africa, but symptoms were generally mild and did not appear to have any long-term effects. Carried by infected Aedes aegypti mosquitos, Zika is largely transmitted through bites, but can also occur through intrauterine infection or sexual transmission.

In 2015, the Zika virus began spreading throughout the Americas and a potential link was seen between the virus and a significant increase in cases of fetal microcephaly, as well as other neurologic abnormalities. This connection and the proliferation in cases led to the World Health Organization declaring Zika virus an international public health emergency.

https://www.sciencedaily.com/  Science Daily

https://www.sciencedaily.com/releases/2016/03/160304163404.htm  Original web page at Science Daily

Categories
News

Cancer cells eat their neighbors’ ‘words’

Cancer cells are well-known as voracious energy consumers, but even veteran cancer-metabolism researcher Deepak Nagrath was surprised by their latest exploit: Experiments in his lab at Rice University show that some cancer cells get 30-60 percent of their fuel from eating their neighbors’ “words.”

“Our original hypothesis was that cancer cells were modifying their metabolism based on communications they were receiving from cells in the microenvironment near the tumor,” said Nagrath, assistant professor of chemical and biomolecular engineering at Rice and co-author of a new study describing the research in the open-access journal eLife. “None of us expected to find that they were converting the signals directly into energy.”

The results were part of a four-year study by Nagrath, his students and collaborators at the University of Texas MD Anderson Cancer Center and other institutions about the role of exosomes in cancer metabolism. Exosomes are tiny packets of proteins, microRNA and nucleic acids that cells emit into their environment to both communicate with neighboring cells and influence their behavior. Nagrath, who directs Rice’s Laboratory for Systems Biology of Human Diseases, found that some cancer cells are capable of using these information packets as a source of energy to fuel tumor growth.

His work is the latest in a series of discoveries about cancer metabolism that date to German chemist Otto Warburg’s 1924 discovery that cancer cells produce far more energy from the metabolic process known as glycolysis than do normal cells. The Nobel Prize-winning discovery of the “Warburg effect” led scientists to believe, for decades, that all cancers were dependent on glycolysis. Nagrath’s lab and others have shown in recent years that the truth is far more complex: Each type of cancer has a unique metabolic profile. Nagrath’s work aims at better understanding those profiles and their role in cancer metastasis and drug resistance, and he ultimately hopes to use the knowledge to develop more effective cancer treatments.

In a May 2014 study, Nagrath and colleagues found that highly aggressive ovarian cancer cells were glutamine-dependent and that depriving the cells of external sources of glutamine — as some experimental drugs do — was an effective way to kill late-stage ovarian cancer cells in the lab. And a December 2014 study found that ovarian tumors coax adult stem cells into providing key metabolites they need to grow.

The exosome study began four years ago based upon a growing realization that exosomes might play a role in regulating cancer metabolism.

“A growing body of evidence suggests that exosomes can facilitate crosstalk between cancer cells and other types of cells that are nearby in the microenvironment that surrounds the tumor,” said Hongyun Zhao, the first author of the eLife study. “Some studies suggested that exosomes harbored the potential to regulate cancer cell metabolism, but most research had focused on the exosomes that were produced and emitted by cancer cells themselves. We decided to look at the exosomes of stromal cells, a type of cell that is commonly found in the tumor microenvironment, and see if stromal exosomes were influencing the energy consumption of cancer cells.”

Zhao’s first experiments involved growing cultures of stromal cells, extracting their exosomes and exposing them to cancer cells, which were then monitored for metabolic changes. Nagrath said the tests suggested that the cancer was fueling itself by consuming amino acids directly from the exosomes, and a series of monthslong follow-up tests had to be conducted to rule out other possibilities.

“Our results show that not only do exosomes enhance the phenomenon of the ‘Warburg effect’ in tumors, but exosomes also contain ‘off-the-shelf’ metabolites within their cargo that cancer cells use directly in their metabolic processes,” Zhao said.

Nagrath said some of Zhao’s follow-up tests also suggest possible new treatment regimes. For example, in some tests, Zhao exposed cancer cell cultures to drugs that were known to block the uptake of exosomal signals. The tests, which showed that the cancer cell’s metabolic activity dropped significantly, helped prove that the tumors were using the exosomes as fuel. The fact that four of the drugs used in the tests — heparin, cytochalasin D, ethyl-isopropyl amiloride and choloroquine — are already approved by the Food and Drug Administration for other uses suggests that they may also be useful as chemotherapeutic agents, Nagrath said.

“Disruption of the exosomal metabolic adaptation of cancer cells could provide a novel therapeutic avenue for exploitation,” he said.

https://www.sciencedaily.com/ Science Daily

https://www.sciencedaily.com/releases/2016/03/160307150246.htm  Original web page at Science Daily

Categories
News

* Popular stem cell techniques deemed safe; unlikely to pass on cancer-causing mutations

A new study led by scientists at The Scripps Research Institute (TSRI) and the J. Craig Venter Institute (JCVI) shows that the act of creating pluripotent stem cells for clinical use is unlikely to pass on cancer-causing mutations to patients.

The research, published February 19, 2016 in the journal Nature Communications, is an important step in assessing patient safety in the rapidly developing field of stem cell therapies.

The new study focused on the safety of using induced pluripotent stem cells (iPSCs) in human patients. Because iPSCs can differentiate into any kind of cell in the body, they hold potential for repairing damage from injuries or diseases such as Parkinson’s and multiple sclerosis.

“We wanted to know whether reprogramming cells would make the cells prone to mutations,” said Jeanne Loring, professor of developmental neurobiology at TSRI and co-leader of the new study with Nicholas J. Schork, professor and director of human biology at JCVI. “The answer is ‘no.'”

“The safety of patients comes first, and our study is one of the first to address the safety concerns about iPSC-based cell replacement strategies and hopefully will spark further interest,” added Schork.

To make an iPSC, scientists must reprogram an adult cell, such as a skin cell, to express a different set of genes, which can be accomplished using viruses as delivery vehicles or with molecules called messenger RNAs (mRNAs).

The researchers looked at three popular methods of iPSC production (integrating retroviral vectors, non-integrating Sendai virus and synthetic mRNAs), assessing each for the potential to trigger cancer-causing mutations. While the researchers noted some minor alterations in the iPSCs, none of the methods led to significant mutations. The researchers repeated the experiments two more times and again found no significant risk. “The methods we’re using to make pluripotent stem cells are safe,” said Loring.

The scientists do warn that even though iPSCs don’t gain cancer-causing mutations during reprogramming, potentially harmful mutations can accumulate later on as iPSCs multiply in lab cultures. Loring said scientists must analyze their cells for these mutations before using them in therapies.

“We need to move on to developing these cells for clinical applications,” said Loring. “The quality control we’re recommending is to use genomic methods to thoroughly characterize the cells before you put them into people.”

https://www.sciencedaily.com/  Science Daily

https://www.sciencedaily.com/releases/2016/02/160219111215.htm  Original web page at Science Daily

Categories
News

Stem cell technique makes sperm in a dish

Scientists in China have finally succeeded in creating functioning sperm from mice in the laboratory. To accomplish this feat, the researchers coaxed mouse embryonic stem cells to turn into functional sperm-like cells, which were then injected into egg cells to produce fertile mouse offspring. The work, reported February 25 in Cell Stem Cell, provides a platform for generating sperm cells that could one day be used to treat male infertility in humans.

“Reproducing germ cell development in vitro has remained a central goal in both reproductive biology and reproductive medicine,” says co-senior study author Jiahao Sha of Nanjing Medical University. “We established a robust, stepwise approach that recapitulates the formation of functional sperm-like cells in a dish. Our method fully complies with the gold standards recently proposed by a consensus panel of reproductive biologists, so we think that it holds tremendous promise for treating male infertility.”

Infertility affects up to 15% of couples, and about one-third of cases can be traced to the man. One major cause of male infertility is the failure of precursor germ cells in the testes to undergo a type of cell division called meiosis to form functional sperm cells. Several studies have reported the successful generation of germ cells from stem cells, but they did not fully evaluate the functionality of the germ cells or provide proof for all key hallmarks of meiosis.

Recently, a panel of reproductive biologists proposed gold standard criteria to prove that the major events of meiosis have taken place in engineered germ cells. For example, researchers must show evidence of the correct nuclear DNA content at specific meiotic stages, normal chromosome number and organization, and the capacity of germ cells to produce viable offspring. Until now, the recapitulation of all of the essential steps of meiosis has remained a major obstacle to the production of functional sperm and egg cells in a dish.

To overcome this hurdle, Sha teamed up with co-senior study authors Qi Zhou and Xiao-Yang Zhao of the Institute of Zoology at the Chinese Academy of Sciences to develop a stem cell-based method that fully recapitulates meiosis and produces functional sperm-like cells. The first step was to expose mouse embryonic stem cells (ESCs) to a chemical cocktail, which coaxed the ESCs to turn into primordial germ cells. Next, the researchers mimicked the natural tissue environment of these precursor germ cells by exposing them to testicular cells as well as sex hormones such as testosterone.

Under these biologically relevant conditions, the ESC-derived primordial germ cells underwent complete meiosis, resulting in sperm-like cells with correct nuclear DNA and chromosomal content. To provide final gold-standard proof of meiosis, the researchers injected these sperm-like cells into mouse egg cells and transferred the embryos into female mice. Remarkably, these embryos developed normally and gave rise to healthy, fertile offspring, which gave birth to the next generation.

In future studies, the researchers plan to use their platform to examine the molecular mechanisms controlling meiosis. They will also test their approach in other animals such as primates in anticipation of human studies. However, before this technique is translated to the clinic, possible risks must be ruled out and ethical concerns regarding the use of embryonic cells should be considered.

“If proven to be safe and effective in humans, our platform could potentially generate fully functional sperm for artificial insemination or in vitro fertilization techniques,” Sha says. “Because currently available treatments do not work for many couples, we hope that our approach could substantially improve success rates for male infertility.”

https://www.sciencedaily.com/  Science Daily

https://www.sciencedaily.com/releases/2016/02/160225135207.htm  Original web page at Science Daily

Categories
News

Fat cells outlive skinny ones

Cells with higher fat content outlive lean cells, shows a new study. This study has implications for larger organisms, such as humans, as the results support the phenomenon known as the “obesity paradox.” This concept shows that overweight people have the lowest all-cause mortality rates while fit people, oddly enough, have mortality rates comparable to those categorized as slightly obese. Cells with higher fat content outlive lean cells, says a new study from Michigan State University.

“The obesity paradox baffles scientists across numerous disciplines,” said Min-Hao Kuo, MSU biochemist and molecular biologist who published the study in the current issue of PLoS Genetics. “But when it comes to yeast, which is an excellent model for the studies of human aging, increasing the cellular content of triacylglycerol, or fat, extends the lifespan.”

Kuo’s team was the first to show a positive correlation between Triacylglycerol, or TAG, content and lifespan. The connection provides support for the obesity paradox theory, he added.

TAG is a fat found in all eukaryotes that include animals, plants and fungi. The lipid’s ability to store excessive energy, provide insulation and accumulate in response to many stressors is well known. What’s perplexing, though, is how TAG influences lifespan.

“Our team used genetic approaches to manipulate the cellular capacity of triacylglycerol reproduction and degradation,” Kuo said. “Via sophisticated analyses, we demonstrated that it preserves life through a mechanism that is largely independent of other lifespan regulation pathways common in yeast as well as humans.”

The first thing Kuo’s team did was delete TAG lipases, enzymes that break down the lipid into smaller molecules for different uses including energy extraction. Unable to utilize TAG, these yeast accumulated fat inside the cells. In addition, Kuo and his colleagues boosted the production of the fat by increasing the enzyme for TAG synthesis.

In both cases, blocking TAG breakdown and forcing its production, yeast cells are fatter and have longer lifespan. In contrast, yeast cells depleted of the ability to synthesize TAG are lean but die early. Overexpressing a TAG lipase in an otherwise normal strain forces TAG breakdown. These cells also suffer from a shorter lifespan.

Interestingly, those fat and long-living yeast cells do not seem to suffer from obvious growth defects. They mate and produce progeny well. They also have normal resistance to different environmental stresses. On the other hand, other common methods of extending lifespan, such as caloric restriction and deletion of genes key to nutrient sensing, frequently cause cells to grow slowly or be less tolerant of environmental stresses.

While the team suspects that the pro-longevity function exists in humans, they’ve yet to prove that triacylglycerol could drive the intriguing phenomenon in humans.

“Our paper likely will stimulate a new wave of research that has broad and deep impacts, including potential advances in human medicine,” Kuo said.

https://www.sciencedaily.com/  Science Daily

https://www.sciencedaily.com/releases/2016/02/160223143302.htm  Original web page at Science Daily

Categories
News

* Electron microscopy captures snapshot of structure coronaviruses use to enter cells

High-resolution cryo-electron microscopy and supercomputing have now made it possible to analyze in detail the infection mechanisms of coronaviruses. These viruses are notorious for attacking the respiratory tract of humans and animals.

A research team that included scientists from the University of Washington (UW), the Pasteur Institute and the University of Utrecht has obtained an atomic model of a coronavirus spike protein that promotes entry into cells. Analysis of the model is providing ideas for specific vaccine strategies. The study results are outlined in a recent UW Medicine-led study published in Nature. David Veesler, UW assistant professor of biochemistry, headed the project.

These viruses, with their crowns of spikes, are responsible for almost a third of mild, cold-like symptoms and atypical pneumonia worldwide, Veesler explained. But deadly forms of coronaviruses emerged in the form of SARS-CoV (severe acute respiratory syndrome coronavirus) in 2002 and of MERS-CoV (Middle East respiratory syndrome coronavirus) in 2012 with fatality rates between 10 percent to 37 percent.

These outbreaks of deadly pneumonia showed that coronaviruses can transmit from various animals to people. Currently, only six coronaviruses are known to infect people, but many coronaviruses naturally infect animals. The recent deadly outbreaks resulted from coronaviruses overcoming the species barrier. This suggests that other new, emerging coronavirus with pandemic potential are likely to emerge. There are no approved vaccines or antiviral treatments against SARS-CoV or MERS-CoV.

The ability of coronaviruses to attach to and enter specific cells is mediated by a transmembrane spike glycoprotein. It forms trimers decorating the virus surface. Trimers are structures assembled from three identical protein units. The structure the researchers studied is in charge of binding to and fusing with the membrane of a living cell. The spike determines what kinds of animals and what types of cells in their bodies each coronavirus can infect.

Using state of the art, single particle cryo-electron microscopy and supercomputing analysis, Veesler and his colleagues revealed the architecture of a mouse coronavirus spike glycoprotein trimer. They uncovered an unprecedented level of detail. The resolution is 4 angstroms, a unit of measurement that expresses the size of atoms and the distances between them and that is equivalent to one-tenth of a nanometer.

“The structure is maintained in its pre-fusion state, and then undergoes major rearrangements to trigger fusion of the viral and host membranes and initiate infection,” Veesler explained.

The coronavirus fusion machinery is reminiscent of the fusion proteins found in another family of viruses, the paramyxoviruses, which include respiratory syncytial virus (the leading cause of infant hospitalizations and wheezing in children) as well as the viruses that cause measles and mumps. This resemblance implies that the coronavirus and paramyxovirus fusion proteins could employ similar mechanisms to promote viral entry and share a common evolutionary origin.

The researchers also compared crystal structures of parts of the spike protein in mouse and human coronaviruses. Their findings provide clues as to how the molecular structure of these protein domains might influence which specific animal species the virus is able to infect.

The researchers also analyzed the structure for possible targets for vaccine design and anti-viral therapies. They observed that the outer edge of the coronavirus spike trimer has a fusion peptide — a chain of amino acids — that is involved in viral entry into host cells. The easy accessibility of this peptide, and its expected similarity among a number of coronaviruses, suggests possible vaccine strategies to neutralize a variety of these viruses.

“Our studies revealed a weakness in this family of viruses that may be an ideal target for neutralizing coronaviruses,” Veesler said.

There may be a way, the researchers noted, to elicit broadly neutralizing antibodies recognizing this peripheral peptide. Neutralizing antibodies protect against infections by stopping a mechanism in a pathogen. Broadly neutralizing antibodies would be effective against several strains of pathogen, in this case coronaviruses. The physical structure of the fusion peptide inspires ideas for the design of proteins that would disable it.

“Small molecules or protein scaffolds might eventually be designed to bind to this site,” Veesler said, “to hinder insertion of the fusion peptide into the host cell membrane and to prevent it from undergoing changes conducive to fusion with the host cell. We hope that this might be the case, but much more work needs to be done to see if it is possible.”

The coronavirus spike protein structure described in this Letter to Nature is expected to resemble other coronavirus spike proteins.

“Therefore, the structure we analyzed in the mouse coronavirus is likely to be representative of the architecture of other coronavirus spike proteins such as those of MERS-CoV and SARS-CoV,” the researchers observed.

The researchers summed up their paper, “Our results now provide a framework to understand coronavirus entry and suggest ways for preventing or treating future coronavirus outbreaks.”

“Such strategies,” Veesler said, “would be applicable to several existing coronaviruses and to emerging future strains of coronavirus that conserve this same structure for entering cells.”

https://www.sciencedaily.com/ Science Daily

https://www.sciencedaily.com/releases/2016/02/160226173209.htm  Original web page at Science Daily

Categories
News

Destroying worn-out cells makes mice live longer

Eliminating worn-out cells extends the healthy lives of lab mice — an indication that treatments aimed at killing off these cells, or blocking their effects, might also help to combat age-related diseases in humans.

As animals age, cells that are no longer able to divide — called senescent cells — accrue all over their bodies, releasing molecules that can harm nearby tissues. Senescent cells are linked to diseases of old age, such as kidney failure and type 2 diabetes.

To test the cells’ role in ageing, Darren Baker and Jan van Deursen, molecular biologists at the Mayo Clinic in Rochester, Minnesota, and their colleagues engineered mice so that their senescent cells would die off when the rodents were injected with a drug.

The work involved sophisticated genetic tinkering and extensive physiological testing, but the concept has an elegant simplicity to it. “We think these cells are bad when they accumulate. We remove them and see the consequences,” says Baker. “That’s how I try to explain it to my kids.”

Mice whose senescent cells were killed off over six months were healthier, in several ways, than a control group of transgenic mice in which these cells were allowed to build up. Their kidneys worked better and their hearts were more resilient to stress, they tended to explore their cages more and they developed cancers at a later age. Eliminating senescent cells also extended the lifespans of the mice by 20–30%, Baker and van Deursen report in Nature on 3 February.

The research is a follow-up to a 2011 study, in which their team also found that eliminating senescent cells delayed the onset of diseases of old age in mice, although that work had been done in mice which had a mutation that causes premature ageing.

In the hope of discovering therapies for diseases of old age, researchers are already looking for drugs that can directly eliminate senescent cells or stop them from churning out factors that damage neighbouring tissue. They include Baker and van Deursen, who have have licensed patents to develop such drugs to a company van Deursen has co-founded.

The team’s experiment “gives you confidence that senescent cells are an important target,” says Dominic Withers, a clinician-scientist who studies ageing at Imperial College London and who co-wrote a News and Views article for Nature that accompanies the Mayo Clinic report. “I think that there is every chance this will be a viable therapeutic option.”

Nature doi:10.1038/nature.2016.

http://www.nature.com/news/index.html  Nature

http://www.nature.com/news/destroying-worn-out-cells-makes-mice-live-longer-1.19287  Original web page at Nature

Categories
News

Common cell transformed to master heart cell

By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin-Madison have generated master heart cells — primitive progenitors that form the developing heart.

Writing online Feb. 11 in the journal Cell Stem Cell, a team led by cardiologist Timothy J. Kamp reports transforming mouse fibroblasts, cells found mostly in connective tissue such as skin, into primitive master heart cells known as induced cardiac progenitor cells. The technology could permit a scalable method for making an almost unlimited supply of the three major types of cells in the heart. If replicated in human cells, the feat could one day fuel drug discovery, powerful new models for heart disease and the raw material for treating diseased hearts.

The lead author of the new study, UW-Madison postdoctoral fellow Pratik A. Lalit, found that 11 genes that play a central role in embryonic heart development could be used to reprogram the fibroblasts. He and his colleagues then narrowed the number of essential genes to five. Importantly, the group also defined the conditions necessary for the transformed cells to be effectively cultured in the laboratory.

Using the five genes, Lalit, Kamp and their team could push the fibroblast cells back in developmental time to become the cardiac progenitor cells that make cardiomyocytes, smooth muscle cells and endothelial cells — the trio of workhorse cells that make up the organ. The induced cardiac progenitor cells are capable of making billions of the critical heart cells, providing ample material to study heart disease in the laboratory dish, equip high-throughput screens to test various compounds for safety and efficacy, and ultimately, to treat heart disease by replacing diseased cells with healthy ones.

“Because the reprogrammed cells are actively dividing, we can generate billions of cells with relative ease,” says Kamp, who also co-directs the UW-Madison Stem Cell and Regenerative Medicine Center.

The study, explains Lalit, was like an exercise in reverse engineering: observing the genetic factors in play as the heart develops in a mouse embryo and using those to direct the fibroblast down the cardiac developmental pathway or lineage. “We’re learning from what happens in the embryo during cardiac development,” he says. “What does it take to make a normal heart?”

A key advantage of the engineered cardiac progenitor cells, notes Kamp, is that unlike all-purpose pluripotent stem cells, which can become any of the 220 different kinds of cells in the human body, the induced progenitor cells made from fibroblasts are faithful only to the cardiac lineage — a desired feature for cardiac applications. A potential drawback of cell transplants derived from all-purpose stem cells is the small but very real possibility of creating a teratoma, a tumor from tissue other than the intended cell lineage.

“With cardiac progenitor cells, you can reduce the risk of tumor formation as they are more committed to the heart lineages and are unlikely to form a tumor,” says Kamp.

Lalit and Kamp’s team tested the new cells in mice by experimentally inducing heart attacks. Injecting the engineered cells into the damaged hearts of mice, they observed the cells migrating to the damaged part of the heart and making cardiomyocytes — the heart cells that contract to underpin the beating of the heart — as well as smooth muscle and endothelial cells, key cells that form blood vessels. The implanted cells led to an uptick in survival of the heart-impaired mice.

http://www.sciencedaily.com/  Science Daily

http://www.sciencedaily.com/releases/2016/02/160211140434.htm  Original web page at Science Daily

Categories
News

First serotonin neurons made from human stem cells

Su-Chun Zhang, a pioneer in developing neurons from stem cells at the University of Wisconsin-Madison, has created a specialized nerve cell that makes serotonin, a signaling chemical with a broad role in the brain.

Serotonin affects emotions, sleep, anxiety, depression, appetite, pulse and breathing. It also plays a role in serious psychiatric conditions like schizophrenia, bipolar disorder and depression.

“Serotonin essentially modulates every aspect of brain function, including movement,” Zhang says. The transmitter is made by a small number of neurons localized on one structure at the back of the brain. Serotonin exerts its influence because the neurons that make it project to almost every part of the brain.

The study, reported in the journal Nature Biotechnology, began with two types of stem cells: one derived from embryos, the other from adult cells. Because serotonin neurons form before birth, the researchers had to recreate the chemical environment found in the developing brain in the uterus, Zhang says.

“That sounds reasonably simple, and we have made so many different types of neural cells. Here, we had to instruct the stem cells to develop into one specific fate, using a custom-designed sequence of molecules at exact concentrations. That’s especially difficult if you consider that the conditions needed to make serotonin neurons are scarce, existing in one small location in the brain during development.”

The cells showed the expected response to electrical stimulation and also produced serotonin.

Although other scientists have matured stem cells into something resembling serotonin neurons, the case is much more conclusive this time, says first author Jianfeng Lu, a scientist at UW-Madison’s Waisman Center. “Previously, labs were producing a few percent of serotonin neurons from pluripotent stem cells, and that made it very difficult to study their cells. If you detect 10 neurons, and only two are serotonin neurons, it’s impossible to detect serotonin release; that was the stone in the road.”

Instead, those neurons were identified based on cellular markers, which is “not sufficient to say those are functional serotonin neurons,” Lu says.

To confirm that the new cells act like serotonin neurons, “we showed that the neurons responded to some FDA-approved drugs that regulate depression and anxiety through the serotonin pathway,” Zhang says.

While the previous attempts “followed what was learned from mouse studies,” the current study used other growth factors, Zhang says. “It was not exactly trial and error; we have some rules to follow, but we had to refine it little by little to work out — one chemical at a time — the concentration and timing, and then check and recheck the results. That’s why it took time.”

Although cells derived from stem cells are commonly used to test drug toxicity, Zhang is aiming higher with the serotonin neurons. “We think these can help develop new, more effective drugs, especially related to the higher neural functions that are so difficult to model in mice and rats,” he says. “Particularly because they are from humans, these cells may lead to benefits for patients with depression, bipolar disorder or anxiety. These are some of the most troublesome psychiatric conditions, and we really don’t have great drugs for them now.”

Because the neurons can be generated from induced pluripotent stem cells, which can be produced from a patient’s skin cells, “these could be useful for finding treatments for psychiatric disorders like depression, where we often see quite variable responses to drugs,” says Lu. “By identifying individual differences, this could be a step toward personalized medicine.

“I’m like Su-Chun. I don’t want to just make a publication in a scientific journal. I want our work to affect human health, to improve the human condition.”

http://www.sciencedaily.com/  Science Daily

http://www.sciencedaily.com/releases/2015/12/151215185912.htm  Original web page at Science Daily

Categories
News

Innovation sheds light on how genetic information travels from cell’s nucleus

Discovery science led by the University of Alberta’s Faculty of Medicine & Dentistry is opening a window on cell biology rarely seen before. New research featured in the Journal of Cell Biology has revealed a real-time look at how genetic information travels within a living cell.

The discovery, observed through a specially designed high-powered microscope, significantly alters current understanding of how RNA is transported from a cell’s nucleus–findings that researchers believe will lead to medical advances.

“You need to understand the system so that when it’s broken, you know how to fix it,” says Ben Montpetit, senior author of the study and an assistant professor in the Department of Cell Biology at the U of A. “I often use the analogy of a mechanic. If your car breaks down, you bring it to the mechanic because they understand how the car works, where to look and how to diagnose the issue. But if they didn’t understand how the car works and, say, your car didn’t start, would the mechanic spend an hour looking at the ashtray?”

“We really need to understand the system, and this technology is allowing us to do that now,” adds Azra Lari, lead author of the study and a PhD candidate in the Department of Cell Biology.

Until now, scientists observing how RNA travelled from the nucleus would rely on a still image, giving them only a static snapshot of what was happening. New technology developed for the study allowed the research team to observe particles nanometres in size–a billionth of a metre–over just milliseconds in a living yeast cell. By recording the events, they observed the route and time taken for the RNA to be transported from the nucleus to the cytoplasm, where it is then used to encode proteins–the workhorses of the cell. They also observed how that changed after introducing a mutation into the system.

“With the old technology, we could tell there was a defect but could not tell where it was happening. Now we can see the errors occurring in real time,” says Montpetit. “And already with this new imaging technique we’re seeing defects that we didn’t expect–that the models we have wouldn’t have predicted. It just highlights how useful this new technology is going to be.”

“Discovery research is really the driving force that leads to new innovation. It fuels new discovery and is the type of research that solves big problems.” The research team’s work will continue on two fronts–pressing on with their efforts to study mutations and other factors that affect RNA transport, while also honing the imaging technology that made their groundbreaking research possible. They believe this innovative technology will soon help scientists gain an unprecedented understanding of the cell.

http://www.sciencedaily.com/  Science Daily

http://www.sciencedaily.com/releases/2015/12/151223130538.htm  Original web page at Science Daily

Categories
News

* New technology enables us to ‘chart’ all cells in brain

The human brain is made up of hundreds of millions of cells. Many of these cells and their functions are as yet unknown. This is about to change with a new technology that is being used for the first time at the Center for Brain Research at MedUni Vienna and Karolinska Institutet in Stockholm. By combining traditional methods of identifying cells under a microscope and so-called “single-cell RNA sequencing,” it is possible to identify every building block of any given excitable cell. “We are well on the way to being able to map many, if not all, neurons and their functions before too long,” explains lead investigator Tibor Harkany, Head of the Department of Molecular Neurosciences at MedUni Vienna.

So far, we have only been able to study neurons based on a set of scientific premises and to determine or “search for” their function on the basis of a priori knowledge on their morphology (what does the cell look like?), biochemistry (what does it contain?) and what partners a cell might communicate with. “This has hindered the analysis of new types of neurons for which we do not have any anatomical, biochemical or electrophysiological markers. Neuroscience therefore needs radically new approaches to chart the identity of all neurons and other types of non-neuronal cells in the brain,” explains Harkany. “Any new method that helps us to gain a better understanding of the brain and its cellular components has direct relevance to our search for new therapies to treat neuropsychiatric and age-related diseases.”

Using the new technology, which is being jointly applied for the first time in the world in a collaboration between MedUni Vienna and Karolinska Institutet, it is now possible to screen each cell and to compile an exact list of its constituents without any prior knowledge — and at the same time to assess its activity and function in the brain in relation to specific behaviors. Thousands of genes are active at any given time in a single neuron. “This will enable us to compile a representative catalogue of mRNA molecules in the neurons and we can use this, for example, to differentiate various neuronal subtypes and to compare healthy and diseased cells or young neurons with old. This technology is a revolutionary breakthrough, because it enables us to record molecular determinants of neuronal identity,” says Harkany. mRNA molecules are single-stranded ribonucleic acids that carry the code for all proteins that a cell produces.

“It was an enormous challenge to overcome existing technical difficulties, especially to preserve RNA in a state that allows high-quality and reproducible quantitative and qualitative analyses even when first assessing more than hundred parameters of neuronal activity” adds Janos Fuzik, the study’s lead author. As such, the novel technology allows to categorise how neurons might be related to each other, which subsets function in a similar way, what essentially differentiates them, and to predict their roles in neuronal networks and response patterns at unprecedented precision.

Harkany: “Then we will be able to compile a family tree for individual neurons and have a better understanding of their specific contributions to their networks, for example during emotional or learning processes or in memory formation.” Initial study findings included the discovery of five subtypes of neurons that have previously been impossible to research because of their diverse nature. The study also offers another important potential for analysing other types of brain cells, such as astrocytes or microglia (parts of the immune system) in greater detail than was previously possible.

The successful application of the new technology opens up new possibilities for research and clinical practice: entry points for new drugs can be identified more quickly, thus speeding up the development of medicines. At the same time, the new method can also be used for identifying and analysing excitable cells in pancreatic and cardiac tissues, or even in brain tumours. “In this way we will be able to detect both accurately and relatively quickly which cell is not working correctly or is damaged and, more specifically, what is going wrong in the cell,” say the MedUni Vienna brain researchers.

In total, five research clusters have been established at MedUni Vienna. In these clusters, MedUni Vienna is increasingly focusing on fundamental and clinical research. The research clusters include medical imaging, cancer research/oncology, cardiovascular medicine, medical neurosciences and immunology. The present work at MedUni Vienna falls within the remit of the medical neuroscience cluster.

http://www.sciencedaily.com/ Science Daily

http://www.sciencedaily.com/releases/2015/12/151221111440.htm  Original web page at Science Daily

Categories
News

* Reproduction, stem cell researchers set up a rescue plan for Northern White Rhino

International scientists set up a rescue plan for the last three northern white rhinos (Ceratotherium simum cottoni) on Earth. The goal is to use the remaining three rhinos and tissue samples from already dead individuals to multiply them into a viable self-sustaining population. For this purpose, scientists apply recent findings in reproduction and stem cell research.

International scientists set up a rescue plan for the worldwide last three northern white rhinos (Ceratotherium simum cottoni). The goal is to use the remaining three rhinos and tissue samples from already dead individuals to multiply them into a viable self-sustaining population. For this purpose scientists apply recent findings in reproduction and stem cell research. Under the direction of the Leibniz Institute for Zoo and Wildlife Research (IZW), San Diego Zoo Global (USA), Tiergarten Schönbrunn (Austria) and ZOO Dvůr Králové (Czech Republic) experts developed a rescue plan for the northern white rhino.

The plan is to reproduce northern white rhinos using natural gametes of the last living individuals as well as using induced pluripotent stem cells (iPS cells). The iPS cells can be gained from rhino somatic cells, for example from the skin. Subsequently, in the future, it might be possible to specifically mature the iPS cells into neurons, heart muscle cells or even gametes. If everything goes according to plan, in vitro fertilised gametes can be introduced into surrogate mothers and fertile northern white rhinos will be produced. This first use of stem cell technology in animal conservation is ground breaking. A success offers new possibilities in the fight against species extinction caused by humans.

At the expert meeting “Conservation by Cellular Technologies,” which took place from 3rd to 6th December in Vienna, international scientists from four continents came to the conclusion that the northern white rhino can only be rescued by using cellular techniques. One of the participants in the meeting, the Japanese stem cell scientist Katsuhiko Hayashi (Kyushu University), has already grown mice out of simple skin cells. An international team of researchers is now working on transferring this model of success to northern white rhinos.

Only three individuals remain after the death of Nola, a 41-year-old northern white rhinoceros at the San Diego Zoo Safari Park on 22nd November, and Nabiré, a 32-year-old female at ZOO Dvůr Králové on 27th July, 2015. The last three individuals, a male and two females, presently live at Ol Pejeta Conservancy in Kenya. Age and reproductive challenges make the possibility of natural reproduction unlikely but the DNA of a dozen individual northern white rhinos has been preserved in genetic banks in Berlin and San Diego. The experts are using this genetic information to bring back the species.

http://www.sciencedaily.com/  Science Daily

http://www.sciencedaily.com/releases/2015/12/151222082248.htm  Original web page at Science Daily

Categories
News

Novel RNA delivery system may treat incurable blood cancers

With a median survival rate of just five to seven years, Mantle Cell Lymphoma (MCL) is considered the most aggressive known blood cancer — and available therapies are scarce. Three thousand Americans are diagnosed with MCL every year, and despite progress in personalized therapies to treat metastases elsewhere in the body, systemic therapeutic drug delivery to cancerous blood cells continues to challenge the world of cancer research.

A new study by Tel Aviv University researchers offers tangible hope of curing the currently incurable blood cancer — and others like it. The revolutionary system was found to successfully halt the proliferation of a cancer-related protein in white blood cells in both animal models and samples taken from MCL patients.

The research was led by Prof. Dan Peer of TAU’s Department of Cell Research and Immunology and conducted by TAU PhD students Shiri Weinstein and Itai Toker, in collaboration with Prof. Pia Raanani of Rabin Medical Center and Prof. Arnon Nagler of Sheba Medical Center. The study was published in the early edition of the Proceedings of the National Academy of Sciences(PNAS).

“MCL has a genetic hallmark,” said Dr. Peer. “In 85 percent of cases, the characteristic that defines this aggressive and prototypic B-cell lymphoma is the heightened activity of the gene CCND1, which leads to the extreme overexpression — a 3,000- to 15,000-fold increase — of Cyclin D1, a protein that controls the proliferation of cells. Downregulation of Cyclin D1 using siRNAs is a potential therapeutic approach to this malignancy.”

The research validates a novel strategy developed two years ago in Dr. Peer’s lab that involved small interfering RNAs (siRNAs). The radical new delivery system harnesses nanoparticles coated with “GPS” antibodies that navigate toward the location of the cancerous cells, where they then offload Cyclin D1-blockers in the form of siRNAs.

For the purpose of the research, the scientists designed lipid-based nanoparticles (LNPs) coated with anti-CD38 monoclonal antibodies that were taken up by human MCL cells in the bone marrow of affected mice. When loaded with siRNAs against Cyclin D1, the targeting LNPs induced gene silencing in MCL cells and prolonged the survival of tumor-bearing mice with no observed adverse effects.

“In MCL, Cyclin D1 is the exclusive cause of the over-production of B Lymphocytes, the cells responsible for generating antibodies,” said Dr. Peer. “This makes the protein a perfect target for RNA therapy by siRNAs. Normal, healthy cells don’t express the gene, so therapies that destroy the gene will only attack cancer cells. The RNA interference we have developed targets the faulty Cyclin D1 within the cancerous cells. And when the cells are inhibited from proliferating, they sense they are being targeted and begin to die off.”

The new research highlights the therapeutic potential of Cyclin D1 therapy in MCL and presents a novel RNA delivery system that opens new therapeutic opportunities for treating MCL and other similar B-cell malignancies.

“This research makes a definite contribution to the revolution of personalized medicine, whereby you tailor the drug based on the genetic profile of patient,” said Dr. Peer. “In this case, MCL is a disease with a specific genetic hallmark, so you can sequence the patient to identify the mutation(s), and design RNA blockers to be placed inside a nanovehicle.

“While the targeting antibodies — the ‘GPS’ — can be used to target many different B-cell malignancies, the drug itself is designed to silence this specific disease. However, the delivery system can be used to accommodate any disease with a genetic profile. This could be the future. We are seeing it happen before our very eyes.”

http://www.sciencedaily.com/  Science Daily

http://www.sciencedaily.com/releases/2016/01/160105133130.htm  Original web page at Science Daily

Categories
News

Insulin-producing pancreatic cells created from human skin cells

Scientists at the Gladstone Institutes and the University of California, San Francisco (UCSF) have successfully converted human skin cells into fully-functional pancreatic cells. The new cells produced insulin in response to changes in glucose levels, and, when transplanted into mice, the cells protected the animals from developing diabetes in a mouse model of the disease.

The new study, published in Nature Communications, also presents significant advancements in cellular reprogramming technology, which will allow scientists to efficiently scale up pancreatic cell production and manufacture trillions of the target cells in a step-wise, controlled manner. This accomplishment opens the door for disease modeling and drug screening and brings personalized cell therapy a step closer for patients with diabetes.

“Our results demonstrate for the first time that human adult skin cells can be used to efficiently and rapidly generate functional pancreatic cells that behave similar to human beta cells,” says Matthias Hebrok, PhD, director of the Diabetes Center at UCSF and a co-senior author on the study. “This finding opens up the opportunity for the analysis of patient-specific pancreatic beta cell properties and the optimization of cell therapy approaches.”

In the study, the scientists first used pharmaceutical and genetic molecules to reprogram skin cells into endoderm progenitor cells–early developmental cells that have already been designated to mature into one of a number of different types of organs. With this method, the cells don’t have to be taken all the way back to a pluripotent stem cell state, meaning the scientists can turn them into pancreatic cells faster. The researchers have used a similar procedure previously to create heart, brain, and liver cells.

After another four molecules were added, the endoderm cells divided rapidly, allowing more than a trillion-fold expansion. Critically, the cells did not display any evidence of tumor formation, and they maintained their identity as early organ-specific cells.

The scientists then progressed these endoderm cells two more steps, first into pancreatic precursor cells, and then into fully-functional pancreatic beta cells. Most importantly, these cells protected mice from developing diabetes in a model of disease, having the critical ability to produce insulin in response to changes in glucose levels.

“This study represents the first successful creation of human insulin-producing pancreatic beta cells using a direct cellular reprogramming method,” says first author Saiyong Zhu, PhD, a postdoctoral researcher at the Gladstone Institute of Cardiovascular Disease. “The final step was the most unique–and the most difficult–as molecules had not previously been identified that could take reprogrammed cells the final step to functional pancreatic cells in a dish.”

Sheng Ding, PhD, a senior investigator in the Roddenberry Stem Cell Center at Gladstone and co-senior author on the study, adds, “This new cellular reprogramming and expansion paradigm is more sustainable and scalable than previous methods. Using this approach, cell production can be massively increased while maintaining quality control at multiple steps. This development ensures much greater regulation in the manufacturing process of new cells. Now we can generate virtually unlimited numbers of patient-matched insulin-producing pancreatic cells.”

http://www.sciencedaily.com/  Science Daily

http://www.sciencedaily.com/releases/2016/01/160106091738.htm  Original web page at Science Daily

Categories
News

Link between a mitochondrial defect and heart disease

Diet rich in fatty acids can prevent heart disease and increase survival of the mice with this condition, study shows. A defect in a vital mitochondrial process in heart cells causes a type of dilated cardiomyopathy, a heart condition that in humans leads in most cases to heart disease and premature death. The study, published today in Science, uncovers the key role of the protein YME1 in the regulation of the number, type and shape of mitocondria, and demonstrates that its absence induces a metabolic defect typical of patients with heart disease. The study also shows that metabolic strategies based on diet are sufficient to restore correct heart function, opening the possibility of future treatments for patients with this disease.

The heart is the organ responsible for pumping blood and supplying nutrients and oxygen to all organs and cells of the body. The cells charged with these functions are the cardiomyocytes, explains Jaime García-Prieto, joint first author of the study together with his counterpart in Germany, Timothy Wai. Jaime points out that correct heart function requires large amounts of energy; every day the heart burns approximately 20 times its weight in the form of ATP (the molecular energy source), beats more than 100,000 times, and pumps approximately 8000 kg of blood. Therefore any failure in the supply of energy to the heart results decreases the organ’s pumping capacity, leading to heart failure and eventually death.

The major part of the energy necessary for cellular activity is provided by mitochondria. These cellular structures act as ‘power stations’, producing energy from the metabolism of organic ‘fuels’, including sugars, lipids (fatty acids) and amino acids. Lack of a substrate or a failure in the coordinated biochemical processes of energy production has lethal consequences for the cell, and in the case of cardiomyocytes, for the patient.

Dilated cardiomyopathy is a relatively common disease in which the heart enlarges and loses contractile strength. In most cases, the disease causes heart failure (the inability of the heart to efficiently pump blood to meet the body’s needs), and in terminal phases a heart transplant is required to avoid death. Although the condition can develop at any age, it is most common in people aged 40 to 50 years and affects 3 to 10 per 100,000 of the general population. There are currently no specific treatments, and it is therefore essential to “understand the underlying mechanisms,” explains Borja Ibáñez M.D., Ph.D., CNIC researcher, Cardiologist at the University Hospital Fundación Jiménez Díaz, and joint lead author on the study together with Thomas Langer of the Max Planck Institute.

In healthy people, cardiomyocytes consume much more fatty acids than sugars, because of the higher energy content of lipids. This situation is reversed in heart failure patients. Dr. Ibáñez explains that “To date, this was thought to be a defense mechanism, but the prolonged use of glucose by cardiomyocytes may instead be the cause of disease progression.”

The research teams used several genetic and dietary approaches to try to reverse this mitochondrial dysfunction and thus prevent dilated cardiomyopathy. One approach involved feeding a high-fat diet to mice with the mitochondrial defect. As García-Prieto explains, the goal was to “force the heart cells to consume more fatty acids than sugars, and thus ‘bypass’ the mitochondrial defect.” The researchers observed that the high-fat diet restored normal cell metabolism and that despite the presence of the mitochondrial defect the heart regained its normal function. The results of the study demonstrate that this approach impedes disease development and increases the lifespan of mice with the mitochondrial defect.

The prevention of dilated cardiomyopathy in a mouse model by feeding a high-fat diet signals an advance in the understanding of the mechanisms involved in heart disease and has implications for the future development of treatments for this condition. Ibáñez considers that “this result confirms the need to dedicate more resources to basic research that advances knowledge of biological systems at the molecular level, in order to understand them better and thus be able to resolve the problems that arise in patients.”

Valentín Fuster, M.D., Ph.D., General Director of the CNIC warns of the need for caution in the interpretation of these results: “We know that a diet rich in fats is a threat to health because it increases the incidence of atherosclerosis. The possibility that such a diet might be beneficial in certain cases of heart disease is very provocative and attractive. However, much translational research needs to be done before these results can be considered definitive. Nonetheless, this multicenter research program should continue, and perhaps over the medium term we will be in a position to answer this question and perhaps eventually overthrow another established paradigm.”

The next step is to research the effect of dietary intervention in patients with dilated cardiomyopathy. This study will be completed over the coming years, indicates Dr. Ibáñez, thanks to CNIC projects run in partnership with specialist hospitals, such as the joint program between the CNIC and the University Hospital Fundación Jiménez Díaz in Madrid. This project, coordinated Ibañez, investigates the application and benefits in patients with heart disease and other conditions. For Fuster, “This is a clear example of the type of the collaborative and translational research favored by the CNIC, in which research groups with different interests and perspectives collaborate on clinical problems that would not be easily resolved by teams working in isolation.”

http://www.sciencedaily.com/  Science Daily

http://www.sciencedaily.com/releases/2015/12/151203150114.htm  Original web page at Science Daily

Categories
News

* Neuroscientists reveal how the brain can enhance connections

When the brain forms memories or learns a new task, it encodes the new information by tuning connections between neurons. MIT neuroscientists have discovered a novel mechanism that contributes to the strengthening of these connections, also called synapses.

At each synapse, a presynaptic neuron sends chemical signals to one or more postsynaptic receiving cells. In most previous studies of how these connections evolve, scientists have focused on the role of the postsynaptic neurons. However, the MIT team has found that presynaptic neurons also influence connection strength.

“This mechanism that we’ve uncovered on the presynaptic side adds to a toolkit that we have for understanding how synapses can change,” says Troy Littleton, a professor in the departments of Biology and Brain and Cognitive Sciences at MIT, a member of MIT’s Picower Institute for Learning and Memory, and the senior author of the study, which appears in the Nov. 18 issue of Neuron.

Learning more about how synapses change their connections could help scientists better understand neurodevelopmental disorders such as autism, since many of the genetic alterations linked to autism are found in genes that code for synaptic proteins.

One of the biggest questions in the field of neuroscience is how the brain rewires itself in response to changing behavioral conditions — an ability known as plasticity. This is particularly important during early development but continues throughout life as the brain learns and forms new memories.

Over the past 30 years, scientists have found that strong input to a postsynaptic cell causes it to traffic more receptors for neurotransmitters to its surface, amplifying the signal it receives from the presynaptic cell. This phenomenon, known as long-term potentiation (LTP), occurs following persistent, high-frequency stimulation of the synapse. Long-term depression (LTD), a weakening of the postsynaptic response caused by very low-frequency stimulation, can occur when these receptors are removed.

Scientists have focused less on the presynaptic neuron’s role in plasticity, in part because it is more difficult to study, Littleton says. His lab has spent several years working out the mechanism for how presynaptic cells release neurotransmitter in response to spikes of electrical activity known as action potentials. When the presynaptic neuron registers an influx of calcium ions, carrying the electrical surge of the action potential, vesicles that store neurotransmitters fuse to the cell’s membrane and spill their contents outside the cell, where they bind to receptors on the postsynaptic neuron.

The presynaptic neuron also releases neurotransmitter in the absence of action potentials, in a process called spontaneous release. These ‘minis’ have previously been thought to represent noise occurring in the brain. However, Littleton and Cho found that minis could be regulated to drive synaptic structural plasticity.

To investigate how synapses are strengthened, Littleton and Cho studied a type of synapse known as neuromuscular junctions, in fruit flies. The researchers stimulated the presynaptic neurons with a rapid series of action potentials over a short period of time. As expected, these cells released neurotransmitter synchronously with action potentials. However, to their surprise, the researchers found that mini events were greatly enhanced well after the electrical stimulation had ended.

“Every synapse in the brain is releasing these mini events, but people have largely ignored them because they only induce a very small amount of activity in the postsynaptic cell,” Littleton says. “When we gave a strong activity pulse to these neurons, these mini events, which are normally very low-frequency, suddenly ramped up and they stayed elevated for several minutes before going down.”

The enhancement of minis appears to provoke the postsynaptic neuron to release a signaling factor, still unidentified, that goes back to the presynaptic cell and activates an enzyme called PKA. This enzyme interacts with a vesicle protein called complexin, which normally acts as a brake, clamping vesicles to prevent release neurotransmitter until it’s needed. Stimulation by PKA modifies complexin so that it releases its grip on the neurotransmitter vesicles, producing mini events.

When these small packets of neurotransmitter are released at elevated rates, they help stimulate growth of new connections, known as boutons, between the presynaptic and postsynaptic neurons. This makes the postsynaptic neuron even more responsive to any future communication from the presynaptic neuron.

“Typically you have 70 or so of these boutons per cell, but if you stimulate the presynaptic cell you can grow new boutons very acutely. It will double the number of synapses that are formed,” Littleton says.

The researchers observed this process throughout the flies’ larval development, which lasts three to five days. However, Littleton and Cho demonstrated that acute changes in synaptic function could also lead to synaptic structural plasticity during development.

“Machinery in the presynaptic terminal can be modified in a very acute manner to drive certain forms of plasticity, which could be really important not only in development, but also in more mature states where synaptic changes can occur during behavioral processes like learning and memory,” Cho says.

http://www.sciencedaily.com/  Science Daily

http://www.sciencedaily.com/releases/2015/11/151118155301.htm  Original web page at Science Daily

Categories
News

Can stem cell technology be harnessed to generate biological pacemakers?

Although today’s pacemakers are lifesaving electronic devices, they are limited by their artificial nature. For example, their parts can fail or they can become infected. In addition, the devices require regular maintenance, must be replaced periodically, and can only approximate the natural regulation of a heartbeat. A Review article published on November 20 in Trends in Molecular Medicine highlights the promise and limitations of new methods based on stem cell and reprogramming technologies to generate biological pacemakers that might one day replace electronic pacemakers.

“Theoretically, biological pacemakers, which are composed of electrically active cells that can functionally integrate with the heart, could provide natural heart rhythm regulation without the need for indwelling hardware,” says author Vasanth Vedantham, of the University of California, San Francisco.

To create biological pacemakers, one approach is to coax stem cells to become specialized cardiac pacemaker cells that are normally found within the sinoatrial node of the heart. These are then transplanted into an ailing heart to restore pacemaking function. Another promising approach is to directly reprogram supporting cells, already present in the heart–for instance, fibroblasts (e.g., connective tissue)–and convert them into pacemaker cells to restore cardiac function.

Vedantham states that initial large animal studies on biological pacemakers have generated promising results but that much more work remains ahead before biological pacing can be actually considered a clinically viable therapy. For example, researchers need to better understand the mechanisms controlling the development and maintenance of pacemaker cells in the sinoatrial node, just as they must develop ways to compare experimental biological pacemaker tissue with bona fide sinoatrial node tissue. Also, scientists will need to improve the methods used to deliver cells to desired locations within the heart, as well as the recovery of specific individual cells for detailed characterization and functional analyses.

“Biological pacemakers must meet a very high standard of performance to supplant electronic pacemakers,” Vedantham says. “Because even a few seconds without a heartbeat can lead to serious consequences, a biological pacemaker would need to exhibit very robust and reliable performance. It remains to be determined whether this will be technically feasible. Despite such challenges, the field is poised for rapid progress over the next few years,” he adds.

http://www.sciencedaily.com/  Science Daily

http://www.sciencedaily.com/releases/2015/11/151120182815.htm  Original web page at Science Daily

Categories
News

Functional human liver cells grown in the lab

In new research appearing in the journal Nature Biotechnology, an international research team led by The Hebrew University of Jerusalem describes a new technique for growing human hepatocytes in the laboratory. This groundbreaking development could help advance a variety of liver-related research and applications, from studying drug toxicity to creating bio-artificial liver support for patients awaiting transplantations.

The liver is the largest internal organ in the human body, serving as the main site of metabolism. Human hepatocytes — cells that comprise 85% of the liver — are routinely used by the pharmaceutical industry for study of hepatotoxicity, drug clearance and drug-drug interactions. They also have clinical applications in cell therapy to correct genetic defects, reverse cirrhosis, or support patients with a liver-assist device.

Regrettably, while the human liver can rapidly regenerate in vivo, recognized by the ancient Greeks in the myth of Prometheus, this capability to proliferate is rapidly lost when human cells are removed from the body. Thus far, attempts to expand human hepatocytes in the laboratory resulted in immortalized cancer cells with little metabolic function. The scarce supply of human hepatocytes and this inability to expand them without losing function is a major bottleneck for scientific, clinical and pharmaceutical development.

To address this problem, Prof. Yaakov Nahmias, director of the Alexander Grass Center for Bioengineering at the Hebrew University of Jerusalem, partnered with leading German scientists at upcyte technologies GmbH (formerly Medicyte) to develop a new approach to rapidly expand the number of human liver cells in the laboratory without losing their unique metabolic function.

Based on early work emerging from the German Cancer Research Center (DKFZ) on the Human Papilloma Virus (HPV), the research team demonstrated that weak expression of HPV E6 and E7 proteins released hepatocytes from cell-cycle arrest and allowed them to proliferate in response to Oncostatin M (OSM), a member of the interleukin 6 (IL-6) superfamily that is involved in liver regeneration. Whereas previous studies caused hepatocytes to proliferate without control, turning hepatocytes into tumor cells with little metabolic function, the researchers carefully selected colonies of human hepatocytes that only proliferate in response to OSM. Stimulation with OSM caused cell proliferation, with doubling time of 33 to 49 hours. Removal of OSM caused growth arrest and hepatic differentiation within 4 days, generating highly functional cells. The method, described as the upcyte© process (upcyte technologies GmbH), allows expanding human hepatocytes for 35 population doubling, resulting in 1015 cells (quadrillion) from each liver isolation. By comparison, only 109 cells (billion) can be isolated from a healthy organ.

“The approach is revolutionary,” said Dr. Joris Braspenning, who led the German group. “Its strength lies in our ability to generate liver cells from multiple donors, enabling the study of patient-to-patient variability and idiosyncratic toxicity.” The team generated hepatocyte lines from ethnically diverse backgrounds that could be serially passaged, while maintaining CYP450 activity, epithelial polarization, and protein expression at the same level as primary human hepatocytes. Importantly, the proliferating hepatocytes showed identical toxicology response to primary human hepatocytes across 23 different drugs.

“This is the holy grail of liver research,” said Prof. Nahmias, the study’s lead author. “Our technology will enable thousands of laboratories to study fatty liver disease, viral hepatitis, drug toxicity and liver cancer at a fraction of the current cost.” Nahmias noted that genetic modifications preclude using the cells for transplantation, “but we may have found the perfect cell source for the bio-artificial liver project. ”

The proliferating hepatocyte library was recently commercialized by upcyte technologies GmbH (Hamburg, Germany), which is expanding the scope of the technology. “upcyte© hepatocytes represent the next generation of cell technology,” said Dr. Astrid Nörenberg, the company’s managing director. “We are poised to become the leading cell supplier for pharmaceutical development and chemical toxicity testing.”

http://www.sciencedaily.com/  Science Daily

http://www.sciencedaily.com/releases/2015/11/151126104303.htm  Original web page at Science Daily

Categories
News

How glucose regulation enables malignant tumor growth

A new study led by researchers at The Ohio State University Comprehensive Cancer Center. The researchers identified a critical molecule in that pathway that, if blocked, might cripple lipid production by cancer cells and slow tumor growth. This approach would be a new strategy for treating a lethal type of brain cancer called glioblastoma multiforme, as well as other malignancies. This discovery also has significant therapeutic implications on other metabolic disorders with deregulated lipid metabolism, such as atherosclerosis, obesity and diabetes.

The study discovered that activation of the epidermal growth factor receptor (EGFR), which triggers enhanced uptake of glucose, leads to a chemical change in a molecule called SCAP. This enables SCAP to transport a second molecule called SREBP, and this leads to the activation of genes that regulate the production and uptake of lipids. SREBPs are key proteins for regulating lipid metabolism. The researchers published their findings in the journal Cancer Cell Nov. 9, 2015.

“Our findings reveal the previously unrecognized, critical role of glucose in controlling lipid synthesis during tumor development,” says principal investigator Deliang Guo, PhD, assistant professor of radiation oncology at the OSUCCC — James.

“We unraveled the mechanisms behind how glucose drives tumor growth through the specific SREBP pathway. This is an important discovery for future anti-cancer drug development activities.” “For this study, Guo and his colleagues used various human cancer cell lines and a glioblastoma animal model. Technical findings include:

  • EGFR activation increases glucose uptake and promotes a posttranslational change in SCAP called N-glycosylation;
  • That N-glycosylation triggers SCAP/SREBP moving from ER to the Golgi and the subsequent activation of SREBP [and activation of genes involved in lipid production].
  • Blocking the glycosylation of SCAP suppressed the growth of glioblastoma tumors in an animal model.

“Our data explains the underlying molecular mechanism of how cancer cells respond and survive the harsh nutritional variability of the tumor microenvironment,” Guo says.

http://www.sciencedaily.com/  Science Daily

http://www.sciencedaily.com/releases/2015/11/151109140121.htm  Original web page at Science Daily

Categories
News

* Nerve cells warn brain of damage to inner ear

Some nerve cells in the inner ear can signal tissue damage in a way similar to pain-sensing nerve cells in the body, according to new research from Johns Hopkins. If the finding, discovered in rats, is confirmed in humans, it may lead to new insights into hyperacusis, an increased sensitivity to loud noises that can lead to severe and long-lasting ear pain.

“We are still a long way from being able to treat hyperacusis,” says Paul Fuchs, Ph.D., professor of otolaryngology-head and neck surgery, neuroscience and biomedical engineering at the Johns Hopkins University School of Medicine, “but our results suggest that cells called type II afferent neurons are similar to pain-sensing neurons in the rest of the body, so lessons about interventions elsewhere could apply to the ear, too.” A summary of the research was published online in the journal Proceedings of the National Academy of Sciences during the week of Nov. 9.

The new discovery came as a result of interest in why this small subset of afferent nerve cells — nerves that take information from the inner ear to the brain — are quite insensitive to sound. “If they aren’t very good at relaying sounds, what are they doing?” says Fuchs.

Fuchs and his team knew that these type II afferents connect to specialized sensory cells in the ear of mammals. These so-called outer hair cells amplify the sound waves that enter the inner ear, giving mammals very sensitive hearing over a wide range of frequencies. But, according to Fuchs, this specialization comes at a cost.

“Outer hair cells are the canaries in the coal mine for the inner ear, in that they’re the first cells to die due to loud noise, age or other factors,” says Fuchs. “Since they can’t regenerate, their death leads to permanent hearing loss.” So one possible role for type II afferents, he adds, would be to warn the brain of impending damage to outer hair cells.

It was known that nearby supporting cells respond to outer hair cell damage by increasing their inner calcium levels and releasing the chemical messenger ATP. Fuchs’ team knew that type II afferent neurons can respond to ATP, so they damaged outer hair cells while monitoring type II neurons in surgically removed inner ear tissue. Indeed, outer hair cell rupture caused robust excitation of type II neurons.

Fuchs says that the ATP released by the supporting cells is probably what gets the neurons to fire, and the supporting cells might release ATP in response to ATP that leaks out of the ruptured outer hair cells. But he noted that “outer hair cells don’t have to rupture to release ATP. Progressive damage caused by loud noises or other stress is enough to increase ATP levels in the fluid of the inner ear.”

Over evolutionary time, such a mechanism could have evolved to help mammals avoid further damage to their hearing. Such effects might depend on heightened sensitivity of the type II neurons after trauma, akin to the heightened sensitivity of pain-sensing nerves in damaged skin. Hypersensitivity to loud sound (hyperacusis) is a paradoxical consequence of hearing loss in many people. Everyday noises such as slamming doors, clanking dishes and barking dogs can become irritating and even painful.

The good news, Fuchs says, is that the analogies with pain elsewhere in the body provide guidance for future studies. For example, a compound that suppresses pain-sensing nerve cells elsewhere, also prevented type II afferent neurons from firing in response to outer hair cell death. At present, Fuchs cautions, this is a restricted experimental result. But, it provides a “proof of concept” for treating pain associated with inner ear damage. And the Fuchs laboratory plans to explore this question in their ongoing research.

http://www.sciencedaily.com/ Science Daily

http://www.sciencedaily.com/releases/2015/11/151109182050.htm  Original web page at Science Daily

Categories
News

Engineered bat virus stirs debate over risky research

An experiment that created a hybrid version of a bat coronavirus — one related to the virus that causes SARS (severe acute respiratory syndrome) — has triggered renewed debate over whether engineering lab variants of viruses with possible pandemic potential is worth the risks.

In an article published in Nature Medicine1 on 9 November, scientists investigated a virus called SHC014, which is found in horseshoe bats in China. The researchers created a chimaeric virus, made up of a surface protein of SHC014 and the backbone of a SARS virus that had been adapted to grow in mice and to mimic human disease. The chimaera infected human airway cells — proving that the surface protein of SHC014 has the necessary structure to bind to a key receptor on the cells and to infect them. It also caused disease in mice, but did not kill them.

Although almost all coronaviruses isolated from bats have not been able to bind to the key human receptor, SHC014 is not the first that can do so. In 2013, researchers reported this ability for the first time in a different coronavirus isolated from the same bat population.

The findings reinforce suspicions that bat coronaviruses capable of directly infecting humans (rather than first needing to evolve in an intermediate animal host) may be more common than previously thought, the researchers say.

But other virologists question whether the information gleaned from the experiment justifies the potential risk. Although the extent of any risk is difficult to assess, Simon Wain-Hobson, a virologist at the Pasteur Institute in Paris, points out that the researchers have created a novel virus that “grows remarkably well” in human cells. “If the virus escaped, nobody could predict the trajectory,” he says.

The argument is essentially a rerun of the debate over whether to allow lab research that increases the virulence, ease of spread or host range of dangerous pathogens — what is known as ‘gain-of-function’ research. In October 2014, the US government imposed a moratorium on federal funding of such research on the viruses that cause SARS, influenza and MERS (Middle East respiratory syndrome, a deadly disease caused by a virus that sporadically jumps from camels to people).

The latest study was already under way before the US moratorium began, and the US National Institutes of Health (NIH) allowed it to proceed while it was under review by the agency, says Ralph Baric, an infectious-disease researcher at the University of North Carolina at Chapel Hill, a co-author of the study. The NIH eventually concluded that the work was not so risky as to fall under the moratorium, he says. But Wain-Hobson disapproves of the study because, he says, it provides little benefit, and reveals little about the risk that the wild SHC014 virus in bats poses to humans.

Other experiments in the study show that the virus in wild bats would need to evolve to pose any threat to humans — a change that may never happen, although it cannot be ruled out. Baric and his team reconstructed the wild virus from its genome sequence and found that it grew poorly in human cell cultures and caused no significant disease in mice.

“The only impact of this work is the creation, in a lab, of a new, non-natural risk,” agrees Richard Ebright, a molecular biologist and biodefence expert at Rutgers University in Piscataway, New Jersey. Both Ebright and Wain-Hobson are long-standing critics of gain-of-function research.

In their paper, the study authors also concede that funders may think twice about allowing such experiments in the future. “Scientific review panels may deem similar studies building chimeric viruses based on circulating strains too risky to pursue,” they write, adding that discussion is needed as to “whether these types of chimeric virus studies warrant further investigation versus the inherent risks involved”.

But Baric and others say the research did have benefits. The study findings “move this virus from a candidate emerging pathogen to a clear and present danger”, says Peter Daszak, who co-authored the 2013 paper. Daszak is president of the EcoHealth Alliance, an international network of scientists, headquartered in New York City, that samples viruses from animals and people in emerging-diseases hotspots across the globe.

Studies testing hybrid viruses in human cell culture and animal models are limited in what they can say about the threat posed by a wild virus, Daszak agrees. But he argues that they can help indicate which pathogens should be prioritized for further research attention.

Without the experiments, says Baric, the SHC014 virus would still be seen as not a threat. Previously, scientists had believed, on the basis of molecular modelling and other studies, that it should not be able to infect human cells. The latest work shows that the virus has already overcome critical barriers, such as being able to latch onto human receptors and efficiently infect human airway cells, he says. “I don’t think you can ignore that.” He plans to do further studies with the virus in non-human primates, which may yield data more relevant to humans.

Nature doi:10.1038/nature.2015.18787

http://www.nature.com/news/index.html  Nature

http://www.nature.com/news/engineered-bat-virus-stirs-debate-over-risky-research-1.18787  Original web page at Nature

Categories
News

Building immune system memory

Mechanism identified for enhancing immunological memory in helper T cells. Molecular mechanisms that control an immune cell’s ability to remember have been identified by scientists. They found that in helper T (CD4+) cells, the proteins Oct1 and OCA-B work together to put immune response genes on standby so that they are easily activated when the body is re-exposed to a pathogen. The research could inform strategies for developing better vaccines, they say. Vaccines help prevent disease by inducing immunological memory, the ability of immune cells to remember and respond more quickly when re-exposed to the same pathogen. While certain phases of the pathway are well understood, little is known about the role of helper T cells, a “master orchestrator” of the immune response that send signals to activate the immune system.

A study led by the University of Utah School of Medicine has identified molecular mechanisms that control an immune cell’s ability to remember. They found that in helper T (CD4+) cells, the proteins Oct1 and OCA-B work together to put immune response genes on standby so that they are easily activated when the body is re-exposed to a pathogen. The research, which could inform strategies for developing better vaccines, was performed in collaboration with scientists from The Broad Institute and University of Michigan, and published in The Journal of Experimental Medicine.

For immunological memory to be effective, genes that are turned off in immune cells following an infection have to be rapidly turned back on when the body reencounters a pathogen. Previous work in the lab of Dean Tantin, Ph.D., senior author and associate professor in pathology at the University of Utah, showed that the transcription factor Oct1 is required for ‘poising’ Il2, a gene important for immunity, in a state where it can be activated quickly if needed.

“Oct1 is unusual in that it often times doesn’t activate a gene or repress a gene,” explained Tantin. “It can act as an insulator to prevent genes from getting permanently turned off.”

They showed that Oct1 blocks stable repression of genes involved in immunity in resting cells that had been previously activated by a pathogen. Oct1 removed epigenetic tags that ordinarily ensure that Il2 stays turned off. However, Tantin noted that the signaling cues used by Oct1 in activated cells were missing in resting memory T cells that had previously been activated, indicating that there must be another factor needed for Il2 expression.

In this study, Shakya et al. identified OCA-B as being the additional factor required for a robust immune response in resting helper T cells. OCA-B was expressed in activated and re-activated helper T cells and was required, together with Oct1, for removal of repressive epigenetic marks from the Il2 gene. Also, helper T cells from OCA-B deficient mice did not produce as much IL-2 as normal cells when stimulated in culture. The findings demonstrate that OCA-B is required for the activation of Il2, and they present evidence that it additionally regulates a group of 50 — 100 genes in re-stimulated cells.

To further investigate the importance of Oct1 and OCA-B in immunological memory, the researchers examined mice lacking either one of the two genes. Months after infection with a pathogenic virus, OCA-B or Oct1 deficient animals had fewer memory T cells compared to control animals. After reinfection with the same virus, memory cells in the Oct1 and OCA-B deficient animals failed to generate a recall response.

These findings show that Oct1 and OCA-B are involved in memory T cell function and are necessary for the helper cell memory response. Results from this research add to the understanding of how a memory response is generated, which could potentially have therapeutic applications.

“If you had pharmaceutics that could augment this process, you potentially could make better vaccines,” said Tantin. “If you interfered with it, you could inhibit memory formation or function, which might be a valid therapeutic for autoimmunity.” Future studies in his lab will pursue these therapeutic possibilities.

http://www.sciencedaily.com/  Science Daily

http://www.sciencedaily.com/releases/2015/10/151020145351.htm  Original web page at Science Daily

Categories
News

Researchers solve longtime puzzle about how we learn

More than a century ago, Pavlov figured out that dogs fed after hearing a bell eventually began to salivate when they heard the ring. A Johns Hopkins University-led research team has now figured out a key aspect of why.

In the current issue of the journal Neuron, neuroscientist Alfredo Kirkwood settles a long-running debate in neurology: Precisely what happens in the brain when we learn? In other words, neurologically speaking, how did Pavlov’s dogs learn to associate a ringing bell with the delayed reward that followed? For decades, scientists have had a working theory, but Kirkwood’s team is now the first to prove it.

“If you’re trying to train a dog to sit, the initial neural stimuli, the command, is gone almost instantly — it lasts as long as the word ‘Sit,'” said Kirkwood, a professor with the university’s Zanvyl Krieger Mind/Brain Institute. “Before the reward comes, the dog’s brain has already turned to other things. The mystery was, ‘How does the brain link an action that’s over in a fraction of a second with a reward that doesn’t come until much later?'”

The working theory — which Kirkwood’s team has validated — is that invisible “eligibility traces” effectively tag the neural synapses activated by the stimuli so that it can be cemented as true learning with the eventual arrival of a reward.

In the case of a dog learning to sit, when the dog gets a treat or a reward, neuromodulators like dopamine flood the dog’s brain with “good feelings.” Though the brain has long since processed the “Sit” command, eligibility traces respond to the neuromodulators, prompting a lasting synaptic change: learning.

The team was able to prove the theory by isolating cells in the visual cortex of a mouse. When they stimulated the axon of one cell with an electrical impulse, they sparked a response in another cell. By doing this repeatedly, they mimicked the synaptic response between two cells as they process a stimulus and create an eligibility trace. When the researchers later flooded the cells with neuromodulators, simulating the arrival of a delayed reward, the response between the cells strengthened or weakened, showing the cells had “learned” and were able to do so because of the eligibility trace. “This is the basis of how we learn things through reward,” Kirkwood said, “a fundamental aspect of learning.”

In addition to a greater understanding of the mechanics of learning, these findings could enhance teaching methods and lead to treatments for cognitive problems.

http://www.sciencedaily.com/  Science Daily

http://www.sciencedaily.com/releases/2015/10/151026111955.htm  Original web page at Science Daily